

# 第二章 数据的表示与处理

主讲: 李博涵 bhli@nuaa.edu.cn

数据的机器级表示数据的存储与运算

#### 第三讲:浮点数的表示



#### 主 要 内 容

- 整数的表示
  - 十进制数与二进制数
  - 无符号整数与带符号整数
    - 补码与真值的转换、LSB/MSB
- C语言程序中的整数
- 数与数值的意义
  - 数的编码
  - 数的语义
- 二进制符号数
  - 原码方案
  - 补码方案
- 课堂练习

## 回顾:整数的表示



#### 重要知识点:

- 1. 补码(对照原码)
- 2. 无符号数与带符号数(C语言)
- 3. 编码与语义(上下文,整体与局部)

接下来学习, 计算机如何表示带小数点的数?

- 浮点数
  - ■格式 (精巧)
  - IEEE 754

## 带小数点的数



根据补码的定义 假定补码有n位,则:

定点小数:  $[X]_{\stackrel{}{\text{\tiny A}}} = 2 + X$  (-1 $\leq X < 1$ , mod 2)

总结: 定点整数可能无法达到要求的精度, 定点小数范围很小。

示例: [-1.0]<sub>补</sub>= 2 - 1.0 = 1.00...0 (n-1个0) (mod 2)

特殊情况:除了理解就只能脑补记忆。

那想表示范围更大更精准的数值,就需要浮点数的帮助。

### 浮点数再现



- 计算机除了处理整数外,很多时候也需要处理浮点数
  - 例如π, 就无法用前面讲的二进制整数编码方案表示
  - 在工程计算中,大量计算涉及浮点数(图片,视频等)
- 浮点数具有表示范围和精度都较高的特点
  - 它解决了整数和小数位长度固定的限制
  - 允许表示一个很大的数或者很小的数





WilliamM.Kahan(威廉•凯亨)

浮点数标准之父; 1989年图灵奖获得者领导开发了Intel的8087浮点协处理器 1985年完成浮点数标准IEEE 754的制定

#### 浮点数的一般表示格式



。Normal format(规格化数形式):

+/-1.xxxxxxxxx × R<sup>Exponent-bias</sup>

。32位规格化数:

31
S Exponent Significand

1 bit ? bits ? bits

S 是符号位(Sign)

Exponent用移码来表示 (为什么用移码?)

(基可以是 2/4/8/16,约定信息,无需显式表示)

32位是不是随便切?

#### 规格化数



- Exponent ( 阶码 / 指数 ):
  - 偏置常数: 127 (single), 1023 (double) (为什么偏置常数是127?)
  - SP规格化数阶码范围为0000 0001 (-126) ~ 1111 1110 (127)
- Significand (尾数):
  - 规格化尾数最高位总是1,所以隐含表示,省1位
  - 1 + 23 bits ( single ) , 1 + 52 bits ( double )
- 已知机器数求真值

  - SP: (-1)<sup>S</sup> x (1 + Significand) x 2<sup>(Exponent-127)</sup>
  - DP: (-1)<sup>S</sup> x (1 + Significand) x 2<sup>(Exponent-1023)</sup>

指数和尾数,增加任何一方位数 位数都会减少另一方位数

目前方案是在精度与表示范 <u>围之间</u>反复权衡后的结果

## IEEE 754标准



#### 单精度SP:

S Exponent Significand

1 bit 8 bits 23 bits

| 表示的数    | 単  | 精度浮点  | 数  | 双  | <b>【精度浮点</b> | 数  |
|---------|----|-------|----|----|--------------|----|
|         | 符号 | 指数    | 尾数 | 符号 | 指数           | 尾数 |
| 0       | X  | 0     | 0  | X  | 0            | 0  |
| +∞      | 0  | 255   | 0  | 0  | 2047         | 0  |
| -∞      | 1  | 255   | 0  | 1  | 2047         | 0  |
| NaN(非数) | X  | 255   | 非0 | X  | 2047         | 非0 |
| 正的浮点数   | 0  | 1~254 | 任意 | 0  | 1~2046       | 任意 |
| 负的浮点数   | 1  | 1~254 | 任意 | 1  | 1~2046       | 任意 |

符号: 1位, 0~正, 1~负

指数: 8位, 用于表示范围

尾数: 23位, 用于表示精度

DP 1,11,52

#### 对比两个绝对值小于1的数



- 绝对值小于1的浮点数,其指数是负的
  - 示例: 0.5和0.25, 其对应的就是1.0x2<sup>-1</sup>与1.0x2<sup>-2</sup>
- 缺点: 负指数的浮点数虽较小,但其二进制却似乎是个较大的数
  - 示例: 0.5与2.0

| 31   | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17      | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|----|----|----|----|----|----|----|----|----|----|----|----|----|---------|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| S 指数 |    |    |    |    |    |    |    |    |    |    |    |    |    | <b></b> | ζ  |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| 0    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

0.5(1.0×2-1)的浮点数格式为: 0x7F800000

| 31     | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17      | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|---------|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| S 指数 「 |    |    |    |    |    |    |    |    |    |    |    |    |    | <b></b> | Į  |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

2.0 (1.0×2+1) 的浮点数格式: 0x00800000

浮点数: 0.5<2.0

二进制: 0x7F800000 > 0x0080000

#### 偏置常数

- 目标: 00000000<sub>2</sub>对应最小的负指数,而1111111<sub>2</sub>对应最大的正指数
- 思路:编码用的指数=真实指数+127;也称为偏阶记数法
- 示例: 0.5与2.0
  - 0.5的偏阶编码指数: 11111111<sub>2</sub>+0111111<sub>2</sub>=01111110<sub>2</sub>
  - 2.0的偏阶编码指数: 00000001<sub>2</sub>+01111111<sub>2</sub>=10000000<sub>2</sub>

| 31    | 30 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| S指数尾数 |       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| 0     | 0 1   | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

0.5(1.0×2-1)的浮点数格式为: 0x3F000000

| 31      | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| S 指数 尾数 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| 0       | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

2.0(1.0×2+1)的浮点数格式: 0x4000000

## 浮点数精度的重要性



-SpaceX火箭成功上天,两位宇航员乘坐着载人龙飞船飞向天空。

然而,在1996年欧洲航天局耗时八年的Ariana 5火箭在发射后37秒爆炸。原因是控制火箭飞行的软件存在故障,这件事可以说是历史上损失最惨重的软件故障事件之一了。事故发生后一项资料给出了真因,是64位浮点数转换为16位带符号整数时产生了缓冲区溢出。这个原本可以通过修改数的变量类型就能避免的错误,造成了80多亿美金的损失。



■这个事件也告诉我们, 计算机中的数据看似简单, 但往往隐藏着一些不容易被察觉的错误, 这种错误有时会带来重大损失, 因此, 对数据的处理要格外注意。